Fractional-Diffusion-Advection Limit of a Kinetic Model
نویسندگان
چکیده
A fractional diffusion equation with advection term is rigorously derived from a kinetic transport model with a linear turning operator, featuring a fat-tailed equilibrium distribution and a small directional bias due to a given vector field. The analysis is based on bounds derived by relative entropy inequalities and on two recently developed approaches for the macroscopic limit: a Fourier-Laplace transform method for spatially homogeneous data and the so called moment method, based on a modified test function.
منابع مشابه
Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملFinite difference approximations for a fractional advection diffusion problem
Abstract: The use of the conventional advection diffusion equation in many physical situations has been questioned by many investigators in recent years and alternative diffusion models have been proposed. Fractional space derivatives are used to model anomalous diffusion or dispersion, where a particle plume spreads at a rate inconsistent with the classical Brownian motion model. When a fracti...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملRandom death process for the regularization of subdiffusive anomalous equations
Subdiffusive fractional equations are not structurally stable with respect to spatial perturbations to the anomalous exponent (Phys. Rev. E 85, 031132 (2012)). The question arises of applicability of these fractional equations to model real world phenomena. To rectify this problem we propose the inclusion of the random death process into the random walk scheme from which we arrive at the modifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 48 شماره
صفحات -
تاریخ انتشار 2016